

Poisson Distribution

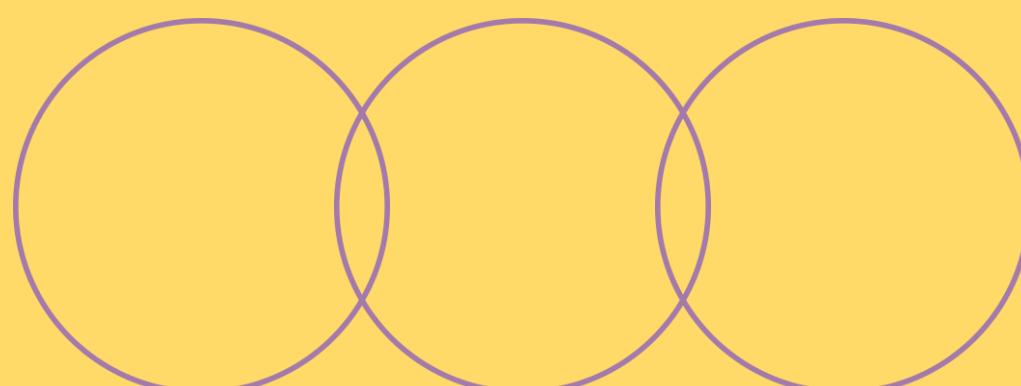
Asst. Lecture : Shereen M. Ibrahim

Overview of Poisson Distribution

The Poisson distribution is named after Siméon Denis Poisson

it's a mathematical formula named after a famous French mathematician who studied random events and probabilities.

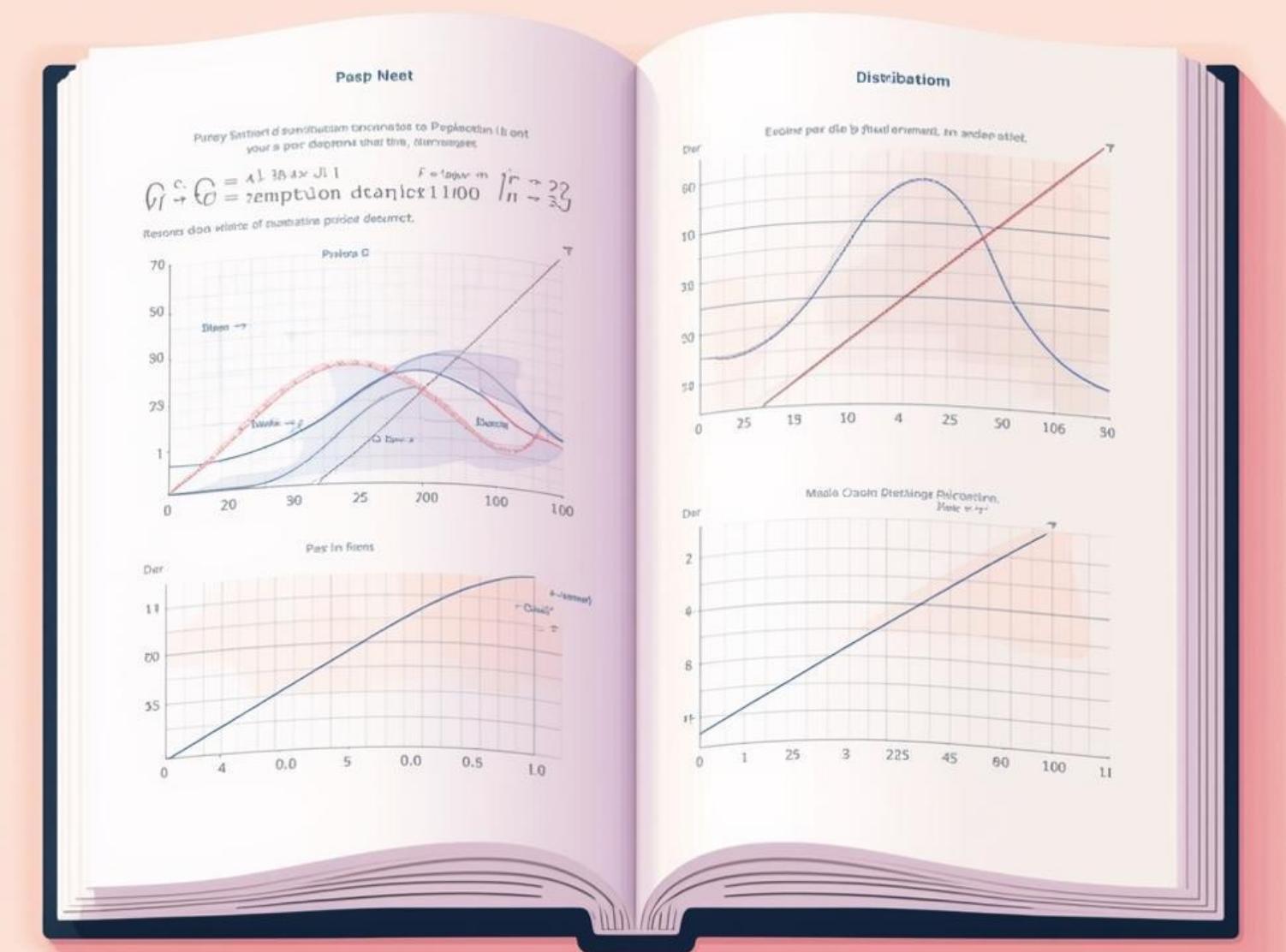
The Poisson distribution models the **number of events** occurring within a **fixed interval**, distinguishing itself from the commonly misunderstood term "poison." Key topics include its **formula**, **properties**, and **real-world applications**.



What is Poisson distribution

The **Poisson distribution** is a probability distribution that models the number of times an event occurs **within a fixed interval** of:

- Time
- Distance
- Area
- Volume

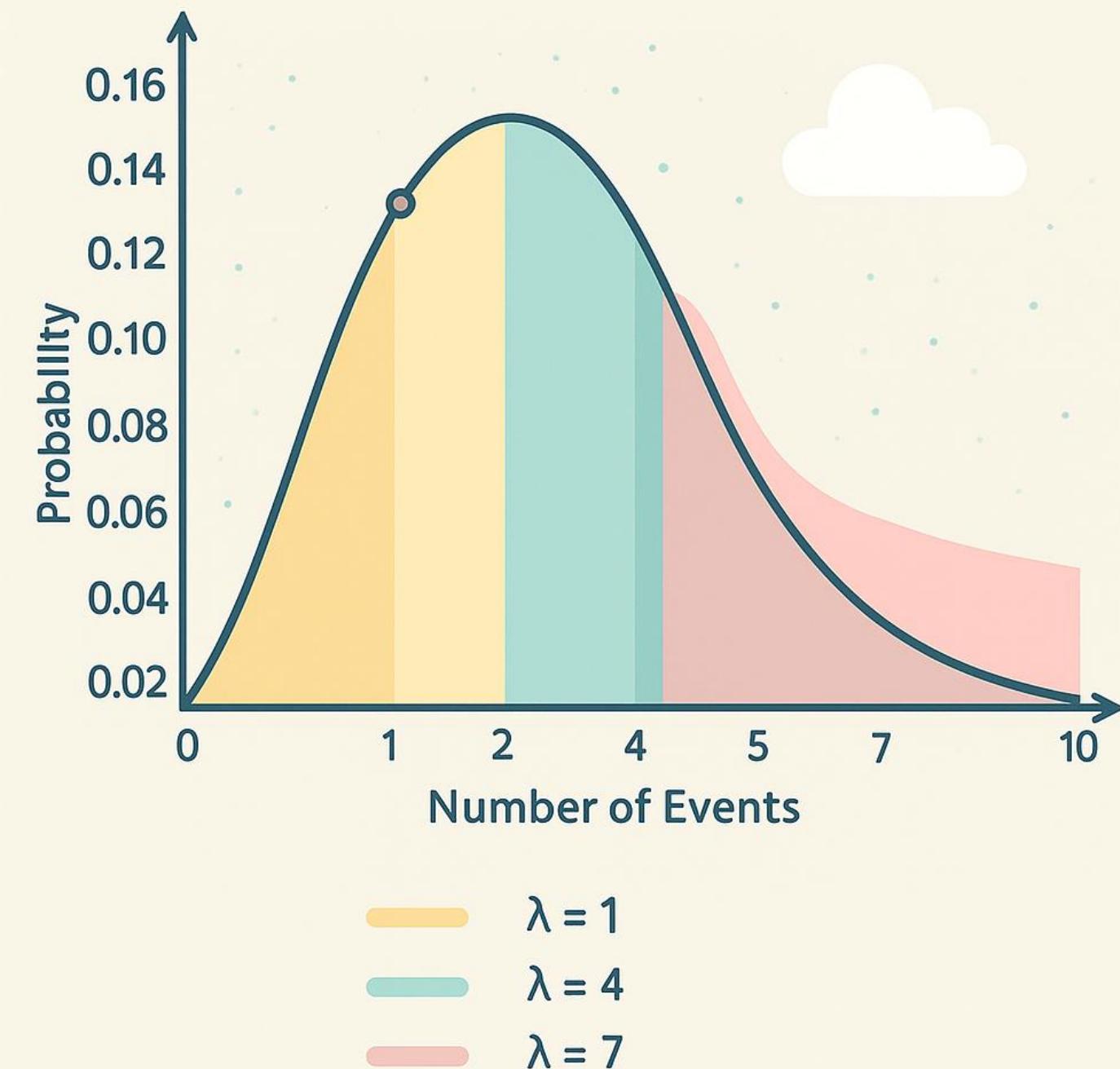


The Poisson distribution is widely used today in engineering, physics, insurance, and finance

It is used when events:

- ✓ Occur independently
- ✓ Occur randomly
- ✓ Occur at a **constant average rate (λ)**
- ✓ Are **rare** relative to the interval

POISSON DISTRIBUTION



Poisson PMF Formula

The Poisson probability mass function (PMF) is expressed as **The Poisson Probability Formula**:

$$P(X = k) = \frac{e^{-\lambda} \cdot \lambda^k}{k!}$$

- $e \approx 2.71828 \rightarrow$ the mathematical constant (base of natural logarithms).
- $k=0,1,2,\dots \rightarrow$ the number of events observed.
- $\lambda \rightarrow$ the average (mean) number of events per interval.
- $k! \rightarrow$ factorial of k , meaning $k \cdot (k-1) \cdot (k-2) \dots$

Properties

- **Mean:** $\mathbb{E}[X] = \lambda$
- **Variance:** $\text{Var}(X) = \lambda$

Applications in Oil and Gas:

The Poisson distribution is widely applied in

Risk assessment, reliability engineering, and safety analysis in the petroleum industry

Engineering Example

Consider A 100 Km Section Of Pipeline Where The Average Number Of Leaks Per Year Is

$\lambda = 0.5$. What Is The Probability Of Observing At Least One Leak In A Year?

Step-by-step solution

1. Write the Poisson PMF:

$$P(X = k) = \frac{e^{-\lambda} \lambda^k}{k!}, k = 0, 1, 2, \dots$$

2. Use the complement rule:

$$P(X \geq 1) = 1 - P(X = 0)$$

3. Compute $P(X = 0)$ with $\lambda = 0.5$:

$$P(X = 0) = \frac{e^{-0.5} \cdot 0.5^0}{0!} = e^{-0.5}$$

4. Evaluate $e^{-0.5}$:

$$e^{-0.5} \approx 0.60653$$

5. Find the final probability:

$$P(X \geq 1) = 1 - 0.60653 \approx 0.39347$$

There is about a 39.35% chance of observing one or more

leaks in a year on this 100 km pipeline section.

Practical Applications of Poisson Distribution

Emails

Counting emails received per hour

Accidents

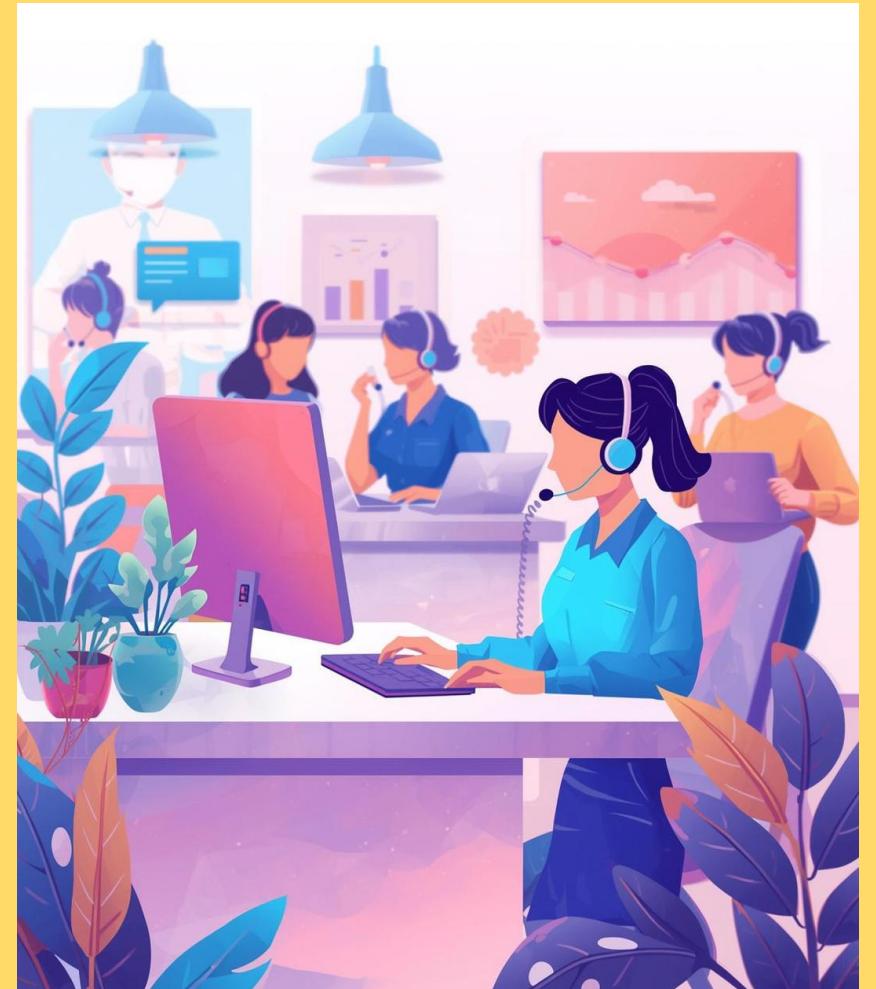
Number of accidents per day

Defects

Counting defects in a batch

Rare Events

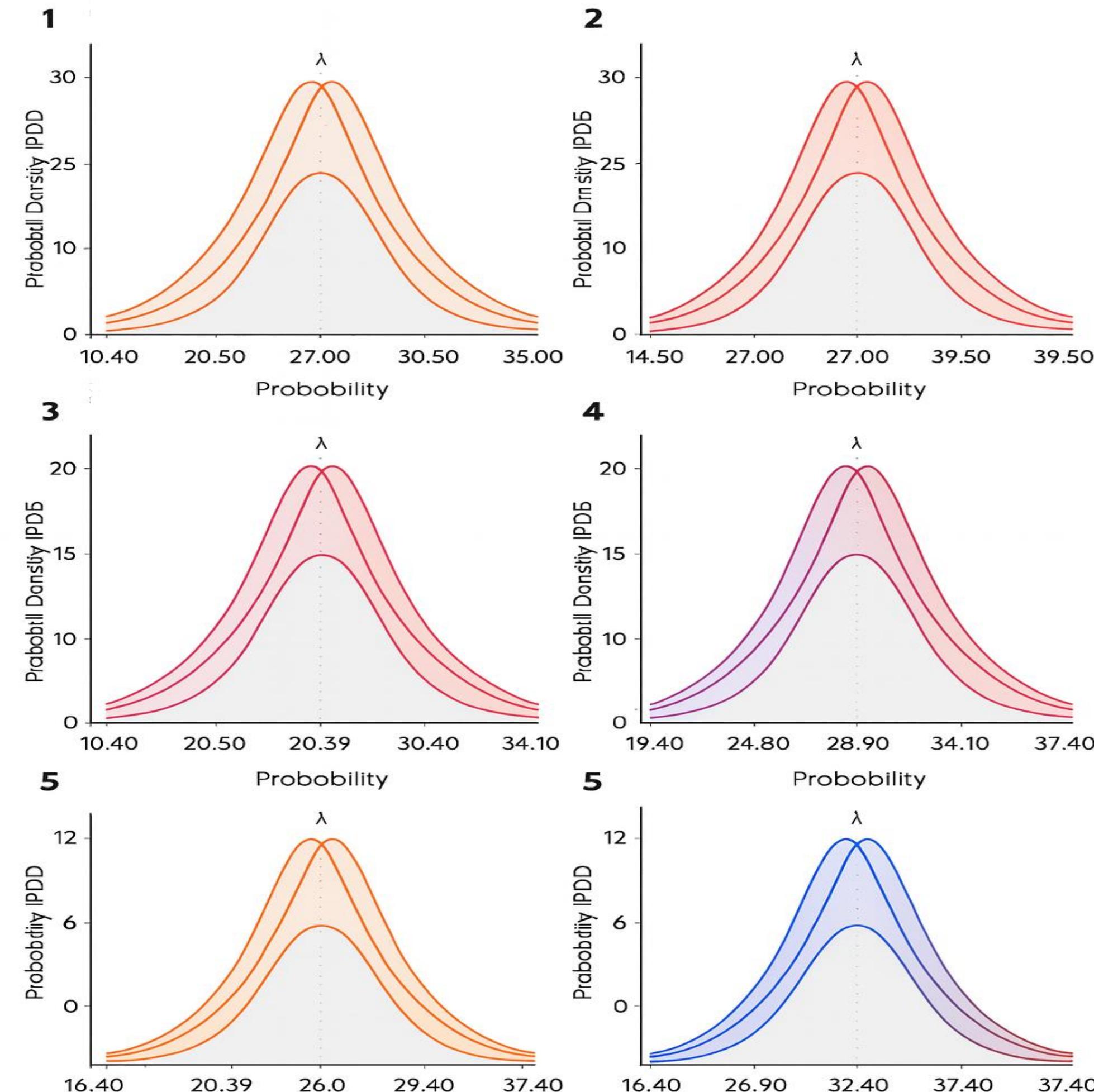
Modeling rare occurrences effectively



Distribution Shape

The shape of the Poisson distribution varies significantly with different λ values, illustrating how probabilities of event counts change from skewed to symmetric distributions.

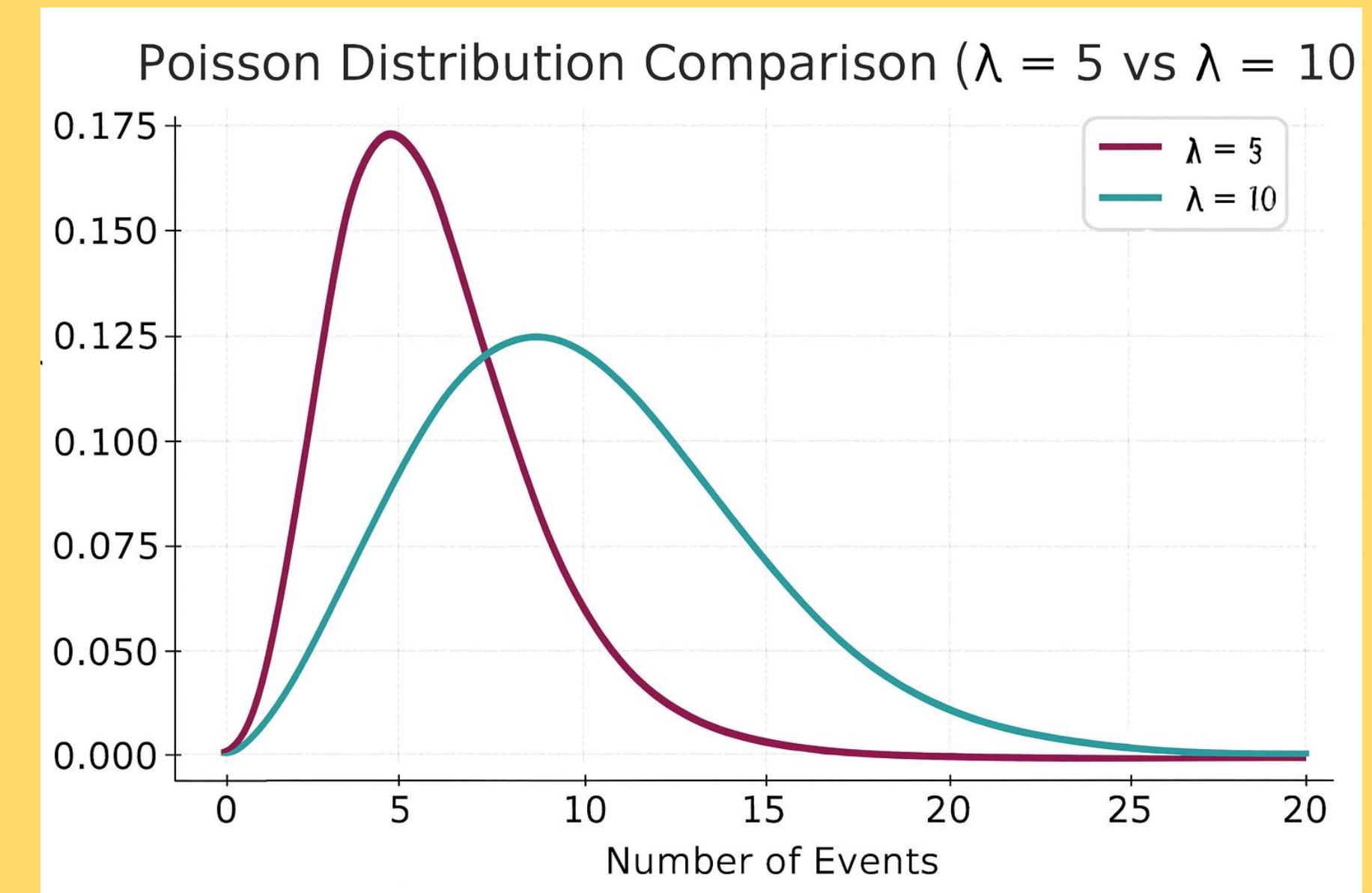
Poisson distribution



Real-World Applications

A petroleum reservoir in which we monitor the number of high-pressure events occurring in a single well over the course of one year. Assume that: The **average number of high-pressure events per year is 5**.

Therefore, the Poisson parameter is: $\lambda = 5$. Now suppose operating conditions change and the **average increases to 10 events per year**.



- This example demonstrates how the Poisson distribution shifts and changes shape in real engineering applications when the event rate (λ) increases.

H.W 16

Application : Poisson Distribution in Petroleum Engineering using (MATLAB)

A petroleum engineer is analyzing the **number of high-pressure events** occurring in a production well per year. Historical data shows that: $\lambda = 5 \text{ events per year}$, We want to calculate the probability of observing **0 to 12 events**

Use the code


```
% Poisson Distribution Example in Petroleum Engineering  
%  $\lambda = 5$  high-pressure events per year
```

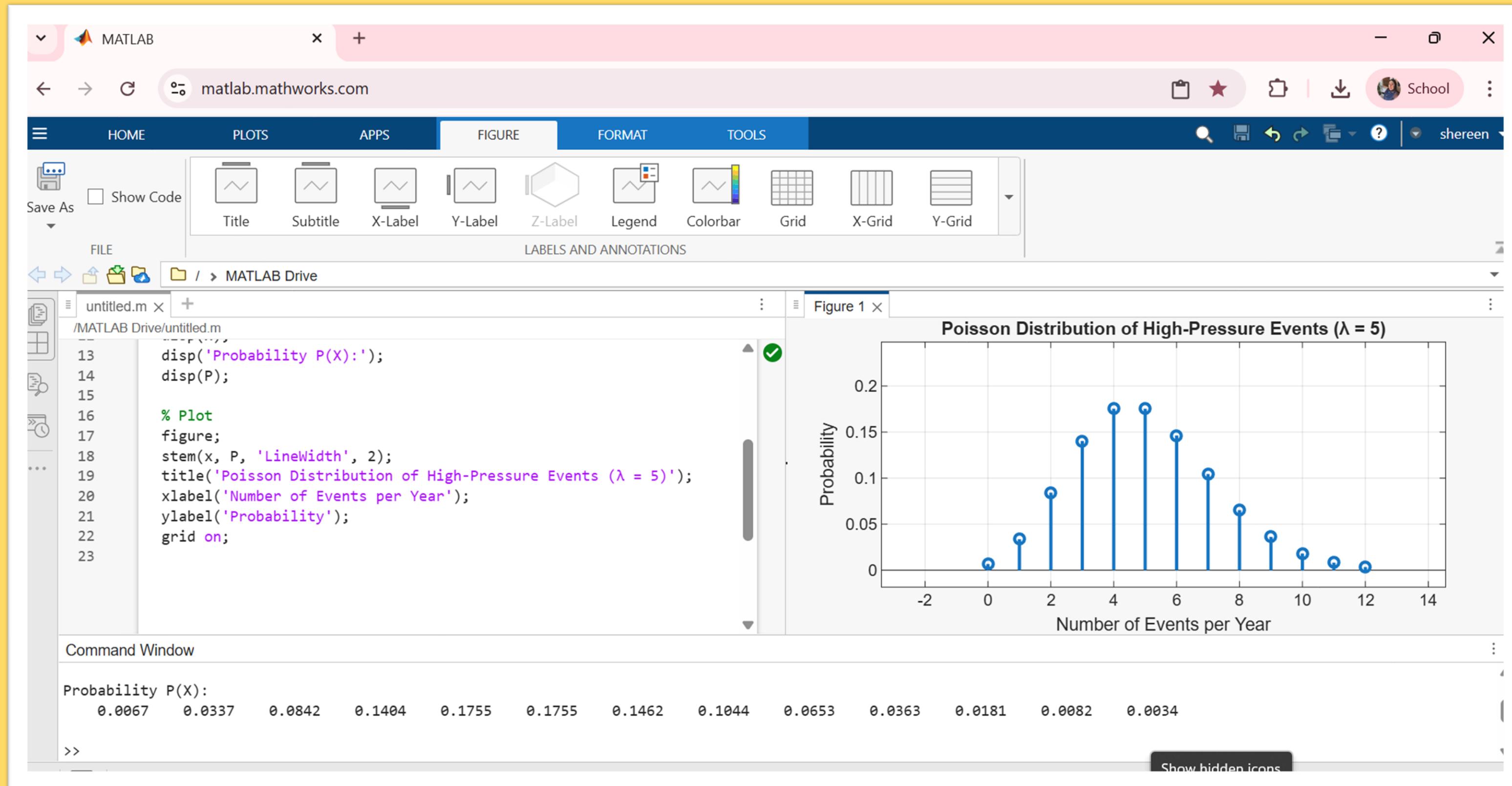
```
lambda = 5;  
x = 0:12;
```

```
% Compute Poisson PMF  
P = poisspdf(x, lambda);
```

```
% Display values  
disp('X values:');  
disp(x);  
disp('Probability P(X):');  
disp(P);
```

```
% Plot  
figure;  
stem(x, P, 'LineWidth', 2);  
title('Poisson Distribution of High-Pressure Events ( $\lambda = 5$ )');  
xlabel('Number of Events per Year');  
ylabel('Probability');  
grid on;
```

Screen shot your page like below , then upload it on google classroom



<https://classroom.google.com/c/ODE1MTc5MzKxMzQ2/a/ODMyMzMyMjk2MDA3/details>

Thank You for
Your Attention!

